Sulfenamides as Building Blocks for Efficient Disulfide‐Based Self‐Healing Materials. A Quantum Chemical Study
نویسندگان
چکیده
The theoretical self-healing capacity of new sulfenamide-based disulfides is estimated by using theoretical methods of quantum chemistry. Starting from previously studied aromatic disulfides, the influence of inserting a NH group between the disulfide and the phenyl ring (forming the sulfenamide), as well as the role of the phenyl ring in the self-healing process is analyzed. Three parameters are used in the evaluation of the self-healing capacity: i) the probability to generate sulfenyl radicals, which is the first step of the process; ii) the effect of the hydrogen bonding, which affects the mobility of the chains; and iii) the height of the exchange reaction barrier. The insertion of the NH group notably decreases the bond dissociation energy and, therefore, increases the probability to produce sulfenyl radicals and helps the approach of these radicals to neighboring disulfides, favoring the self-healing process. The role of the phenyl rings is clearly observed in the reaction barriers, where the π-π stacking interactions notably stabilize the transition states, resulting in larger rate constants. Nevertheless, this stabilization is somewhat reduced in the aromatic sulfenamides, owing to a less effective π-π interaction. Therefore, the sulfenamide-based aromatic disulfides may be considered as promising candidates for the design of efficient self-healing materials.
منابع مشابه
The underlying mechanisms for self-healing of poly(disulfide)s.
Recently, self-healing polymers based on disulfide compounds have gained attention due to the versatile chemistry of disulfide bonds and easy implementation into polymeric materials. However, the underlying mechanisms of disulfide exchange which induce the self-healing effect in poly(disulfide)s remain unclear. In this work, we elucidate the process of disulfide exchange using a variety of spec...
متن کاملDisulfide formation via sulfenamides.
A phosphine-mediated one-step disulfide formation from S-nitrosothiols has been developed. This reaction can convert unstable S-nitrosothiols to stable disulfides via sulfenamide intermediates under very mild conditions. It has the potential to be used for the detection of S-nitrosothiols.
متن کاملThe effect of polylactic acid support in stability and electrical field of heterocyclic coupled hexa peptide nano systems: A novel strateu to drug delivery
Biological materials. recently. are the building blocks of several self-assembling peptide and protein systems.The main challenge In molecular self-assembly is to design molecular building blocks that can undergospontaneous organization. These cyche peptides were produced by an alternating fl'ell number of D- and Laminoacids.which interact through non-covalent interactions co an array of selfas...
متن کاملCombination of ionic self-assembly and hydrogen bonding as a tool for the synthesis of liquid-crystalline materials and organogelators from a simple building block.
In this communication we report on the facile combination of hydrogen bonding and the ionic self-assembly (ISA) process to produce organized materials and fiber-containing organogel superstructures from functionalised oligoelectrolytic building blocks.
متن کاملA fast wallace-based parallel multiplier in quantum-dot cellular automata
Physical limitations of Complementary Metal-Oxide-Semiconductors (CMOS) technology at nanoscale and high cost of lithography have provided the platform for creating Quantum-dot Cellular Automata (QCA)-based hardware. The QCA is a new technology that promises smaller, cheaper and faster electronic circuits, and has been regarded as an effective solution for scalability problems in CMOS technolog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2018